Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Front Microbiol ; 14: 1163566, 2023.
Article in English | MEDLINE | ID: mdl-37303798

ABSTRACT

Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.

2.
Curr Opin Microbiol ; 74: 102320, 2023 08.
Article in English | MEDLINE | ID: mdl-37075547

ABSTRACT

Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.


Subject(s)
Evolution, Molecular , Genome, Viral , Genome, Viral/genetics
3.
mSphere ; 8(3): e0052422, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37017574

ABSTRACT

The effort to discover novel phages infecting Staphylococcus epidermidis contributes to both the development of phage therapy and the expansion of genome-based phage phylogeny. Here, we report the genome of an S. epidermidis-infecting phage, Lacachita, and compare its genome with those of five other phages with high sequence identity. These phages represent a novel siphovirus genus, which was recently reported in the literature. The published member of this group was favorably evaluated as a phage therapeutic agent, but Lacachita is capable of transducing antibiotic resistance and conferring phage resistance to transduced cells. Members of this genus may be maintained within their host as extrachromosomal plasmid prophages, through stable lysogeny or pseudolysogeny. Therefore, we conclude that Lacachita may be temperate and members of this novel genus are not suitable for phage therapy. IMPORTANCE This project describes the discovery of a culturable bacteriophage infecting Staphylococcus epidermidis that is a member of a rapidly growing novel siphovirus genus. A member of this genus was recently characterized and proposed for phage therapy, as there are few phages currently available to treat S. epidermidis infections. Our data contradict this, as we show Lacachita is capable of moving DNA from one bacterium to another, and it may be capable of maintaining itself in a plasmid-like state in infected cells. These phages' putative plasmid-like extrachromosomal state appears to be due to a simplified maintenance mechanism found in true plasmids of Staphylococcus and related hosts. We suggest Lacachita and other identified members of this novel genus are not suitable for phage therapy.


Subject(s)
Bacteriophages , Phage Therapy , Bacteriophages/genetics , Staphylococcus epidermidis/genetics , Genome, Viral , Lysogeny
4.
PLoS Biol ; 21(2): e3001922, 2023 02.
Article in English | MEDLINE | ID: mdl-36780432

ABSTRACT

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Subject(s)
Bacteriophages , Viruses , Humans , Metagenomics , Phylogeny , Viruses/genetics
5.
Virus Res ; 323: 198959, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36209920

ABSTRACT

Approximately half of the characterized begomoviruses have bipartite genomes, but the second genomic segment, the DNA-B, is understudied relative to the DNA-A, which is homologous to the entire genome of monopartite begomoviruses. We examined the evolutionary history of the two proteins encoded by the DNA-B, the genes of which make up ∼60% of the DNA-B segment, from all bipartite begomovirus species. Our dataset of 131 movement protein (MP) and nuclear shuttle protein (NSP) sequences confirmed the deep split between Old World (OW) and New World (NW) species, and showed strong support for deep, congruent branches among the OW sequences of the MP and NSP. NW sequences were much less diverse and had poor phylogenetic resolution; over half of nodes in both the NSP and MP NW clades were supported by <50% bootstrap support. This poor resolution hampered our ability to detect incongruent phylogenies between the MP and NSP datasets, and we found no statistical evidence for recombination within our MP and NSP datasets. Finally, we quantified the sequence diversity between the NW and OW proteins, showing that the NW MP has particularly low diversity, suggesting it has been subject to different evolutionary pressures than the NW NSP.

6.
Microbiol Resour Announc ; 11(10): e0085522, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36173192

ABSTRACT

The annotated whole-genome sequences of five cultured phietaviruses infecting Staphylococcus aureus are presented. They are closely related to prophages that were previously sequenced as part of S. aureus genomes.

7.
J Virol Methods ; 300: 114405, 2022 02.
Article in English | MEDLINE | ID: mdl-34896458

ABSTRACT

The ability of begomoviruses to evolve rapidly threatens many crops and underscores the importance of detecting these viruses quickly and to understand their genome diversity. This study presents an improved protocol for the enhanced amplification and enrichment of begomovirus DNA for use in next generation sequencing of the viral genomes. An enhanced rolling circle amplification (RCA) method using EquiPhi29 polymerase was combined with size selection to generate a cost-effective, short-read sequencing method. This improved short-read sequencing produced at least 50 % of the reads mapping to the target viral reference genomes, African cassava mosaic virus and East African cassava mosaic virus. This study provided other insights into common misconceptions about RCA and lessons that could be learned from the sequencing of single-stranded DNA virus genomes. This protocol can be used to examine the viral DNA as it moves from host to vector, thus producing valuable information for viral DNA population studies, and would likely work well with other circular Rep-encoding ssDNA viruses (CRESS) DNA viruses.


Subject(s)
DNA Viruses , DNA, Circular , Genome, Viral , DNA Viruses/genetics , DNA, Circular/genetics , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing
8.
J Evol Biol ; 34(12): 1901-1916, 2021 12.
Article in English | MEDLINE | ID: mdl-34498333

ABSTRACT

Until recently, most viruses detected and characterized were of economic significance, associated with agricultural and medical diseases. This was certainly true for the eukaryote-infecting circular Rep (replication-associated protein)-encoding single-stranded DNA (CRESS DNA) viruses, which were thought to be a relatively small group of viruses. With the explosion of metagenomic sequencing over the past decade and increasing use of rolling-circle replication for sequence amplification, scientists have identified and annotated copious numbers of novel CRESS DNA viruses - many without known hosts but which have been found in association with eukaryotes. Similar advances in cellular genomics have revealed that many eukaryotes have endogenous sequences homologous to viral Reps, which not only provide 'fossil records' to reconstruct the evolutionary history of CRESS DNA viruses but also reveal potential host species for viruses known by their sequences alone. The Rep protein is a conserved protein that all CRESS DNA viruses use to assist rolling-circle replication that is known to be endogenized in a few eukaryotic species (notably tobacco and water yam). A systematic search for endogenous Rep-like sequences in GenBank's non-redundant eukaryotic database was performed using tBLASTn. We utilized relaxed search criteria for the capture of integrated Rep sequence within eukaryotic genomes, identifying 93 unique species with an endogenized fragment of Rep in their nuclear, plasmid (one species), mitochondrial (six species) or chloroplast (eight species) genomes. These species come from 19 different phyla, scattered across the eukaryotic tree of life. Exogenous and endogenous CRESS DNA viral Rep tree topology suggested potential hosts for one family of uncharacterized viruses and supports a primarily fungal host range for genomoviruses.


Subject(s)
Brassicaceae , Eukaryota , DNA Viruses/genetics , DNA, Single-Stranded , Eukaryota/genetics , Genome, Viral , Phylogeny
9.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34310272

ABSTRACT

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Subject(s)
Begomovirus/genetics , Genetic Variation , Manihot/growth & development , Manihot/virology , Plant Diseases/virology , Base Sequence , Begomovirus/physiology , Codon , DNA, Intergenic , DNA, Viral/genetics , Evolution, Molecular , Genome, Viral , Mutation , Polymorphism, Single Nucleotide , Satellite Viruses/genetics , Satellite Viruses/physiology , Sequence Deletion , Temperature , Viral Proteins/genetics
10.
J Virol ; 95(17): e0054121, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34106000

ABSTRACT

Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper crop production and threaten food security around the world. The frequent emergence of new begomovirus genotypes is facilitated by high mutation frequencies and the propensity to recombine and reassort. Homologous recombination has been especially implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple food crop throughout Africa and an important industrial crop in Asia, two continents where production is severely constrained by CMD. The CMD species complex is comprised of 11 bipartite begomovirus species with ample distribution throughout Africa and the Indian subcontinent. While recombination is regarded as a frequent occurrence for CMBs, a revised, systematic assessment of recombination and its impact on CMB phylogeny is currently lacking. We assembled data sets of all publicly available, full-length DNA-A (n = 880) and DNA-B (n = 369) nucleotide sequences from the 11 recognized CMB species. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the CMB sequences. Six out of the 11 species descended from unique interspecies recombination events. Estimates of recombination and mutation rates revealed that all species experience mutation more frequently than recombination, but measures of population divergence indicate that recombination is largely responsible for the genetic differences between species. Our results support that recombination has significantly impacted the CMB phylogeny and has driven speciation in the CMD species complex. IMPORTANCE Cassava mosaic disease (CMD) is a significant threat to cassava production throughout Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species exhibiting accelerated rates of evolution, driven by high frequencies of mutation and genetic exchange. Here, we present a systematic analysis of the contribution of genetic exchange to cassava mosaic virus species-level diversity. Most of these species emerged as a result of genetic exchange. This is the first study to report the significant impact of genetic exchange on speciation in a group of viruses.


Subject(s)
Begomovirus/isolation & purification , Begomovirus/pathogenicity , Genetic Variation , Manihot/virology , Mutation , Plant Diseases/virology , Recombination, Genetic , Africa , Asia , Begomovirus/classification , Begomovirus/genetics , Evolution, Molecular , Genome, Viral , Phylogeny
11.
Microbiol Resour Announc ; 9(46)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33184153

ABSTRACT

We deeply sequenced two pairs of widely used infectious clones (4 plasmids) of the bipartite begomoviruses African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV). The ACMV clones were quite divergent from published sequences. Raw reads, consensus plasmid sequences, and the infectious clones themselves are all publicly available.

12.
Microbiol Resour Announc ; 9(43)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33093055

ABSTRACT

Acinetobacter baumannii and Stenotrophomonas maltophilia genomes were reconstructed from early-middle 20th-century human skeletal remains, maintained in natural history museums, using a metagenomic binning approach.

14.
Arch Virol ; 165(5): 1253-1260, 2020 May.
Article in English | MEDLINE | ID: mdl-32162068

ABSTRACT

This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.


Subject(s)
Archaeal Viruses/classification , Bacteriophages/classification , Classification/methods , Archaea/virology , Bacteria/virology
15.
Virus Evol ; 5(1): vez019, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31275611

ABSTRACT

Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses' response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.

16.
Adv Virus Res ; 103: 71-133, 2019.
Article in English | MEDLINE | ID: mdl-30635078

ABSTRACT

While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.


Subject(s)
Biological Evolution , DNA Viruses/classification , DNA Viruses/genetics , Genome, Viral , Host Specificity , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA Viruses/pathogenicity , DNA Viruses/physiology , DNA, Single-Stranded , DNA, Viral , Eukaryotic Cells/virology , Genetic Variation , Plant Diseases/virology , Recombination, Genetic
17.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30463962

ABSTRACT

RNA viruses are capable of rapid host shifting, typically due to a point mutation that confers expanded host range. As additional point mutations are necessary for further expansions, epistasis among host range mutations can potentially affect the mutational neighborhood and frequency of niche expansion. We mapped the mutational neighborhood of host range expansion using three genotypes of the double-stranded RNA (dsRNA) bacteriophage φ6 (wild type and two isogenic host range mutants) on the novel host Pseudomonas syringae pv. atrofaciens. Both Sanger sequencing of 50 P. syringae pv. atrofaciens mutant clones for each genotype and population Illumina sequencing revealed the same high-frequency mutations allowing infection of P. syringae pv. atrofaciens. Wild-type φ6 had at least nine different ways of mutating to enter the novel host, eight of which are in p3 (host attachment protein gene), and 13/50 clones had unchanged p3 genes. However, the two isogenic mutants had dramatically restricted neighborhoods: only one or two mutations, all in p3. Deep sequencing revealed that wild-type clones without mutations in p3 likely had changes in p12 (morphogenic protein), a region that was not polymorphic for the two isogenic host range mutants. Sanger sequencing confirmed that 10/13 of the wild-type φ6 clones had nonsynonymous mutations in p12, and 2 others had point mutations in p9 and p5. None of these genes had previously been associated with host range expansion in φ6. We demonstrate, for the first time, epistatic constraint in an RNA virus due to host range mutations themselves, which has implications for models of serial host range expansion.IMPORTANCE RNA viruses mutate rapidly and frequently expand their host ranges to infect novel hosts, leading to serial host shifts. Using an RNA bacteriophage model system (Pseudomonas phage φ6), we studied the impact of preexisting host range mutations on another host range expansion. Results from both clonal Sanger and Illumina sequencing show that extant host range mutations dramatically narrow the neighborhood of potential host range mutations compared to that of wild-type φ6. This research suggests that serial host-shifting viruses may follow a small number of molecular paths to enter additional novel hosts. We also identified new genes involved in φ6 host range expansion, expanding our knowledge of this important model system in experimental evolution.


Subject(s)
Bacteriophage phi 6/genetics , Host Microbial Interactions/genetics , Host Specificity/genetics , Bacteriophage phi 6/metabolism , High-Throughput Nucleotide Sequencing/methods , Mutation , Pseudomonas syringae/virology , RNA Phages/genetics , RNA Viruses/genetics , RNA, Double-Stranded
18.
Curr Opin Virol ; 33: 167-176, 2018 12.
Article in English | MEDLINE | ID: mdl-30243102

ABSTRACT

Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.


Subject(s)
Begomovirus/growth & development , Hemiptera/virology , Insect Vectors/virology , Manihot/growth & development , Plant Diseases/virology , Potyviridae/growth & development , Africa , Animals , Begomovirus/isolation & purification , Developing Countries , Potyviridae/isolation & purification
19.
PLoS Biol ; 16(8): e3000003, 2018 08.
Article in English | MEDLINE | ID: mdl-30102691

ABSTRACT

The high mutation rate of RNA viruses is credited with their evolvability and virulence. This Primer, however, discusses recent evidence that this is, in part, a byproduct of selection for faster genomic replication.


Subject(s)
Mutation Rate , RNA Viruses , Virulence , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...